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Abstract. The human brain consists of many structures, or so-called functional areas. Each area participates in the 

implementation of a certain function of the human organism (senses, vision, movements, thinking, etc.). Of course, 

these areas are not autonomous and are connected to each other, forming a network of brain connections, often 

called the connectome. Understanding how connectivity varies across nodes is an important step in analysing a 

network. These connections are of varying strength and importance and have various other important parameters 

that describe brain activity and its changes under the influence of external events (e.g. stroke, Alzheimer’s disease, 

dementia and other neurological diseases). It turns out that functional regions and their connections can be 

represented as vertices and arcs of a graph, and elements of graph theory can be used to analyse such a model. The 

number of functional areas for graphing can vary and will depend on how detailed the brain structural model is. 

Previous studies have created a literature review, resulting in a knowledge base, and identified the consequences 

of injury or damage to each region resulting in different disfunctions. When the brain is affected by a stroke or any 

other abnormal neurological condition, the functional areas are damaged and the connections between them are 

altered. Consequently, the model of the brain - the graph, the parameters of its vertices and arcs - also changes. 

The purpose of this article is to look at what changes occur in the brain graph in order to use the changed model 

in future studies in the development of a system for predicting possible stroke consequences. 
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Introduction 

A stroke, a frequently occurring neurological condition, can lead to various complications 

afterward, with cognitive impairment being one of the most severe. Unfortunately, this state becomes 

more often due to unhealthy lifestyle, bad habits. A stroke is an acute disorder of cerebral circulation. It 

occurs due to blockage, compression or rupture of the vessels that carry blood to the brain. In this case, 

brain cells die due to lack of oxygen and nutrients. Any brain damage is always associated with severe 

consequences for a person. Of course, it depends on which important brain regions are injured. 

Using different techniques, we can obtain the brain network, which shows connections and 

information flow between different brain regions. In the given article, the authors refer to the source [1], 

where 256 brain regions and their connections are reflected. In simpler terms, the networks within the 

brain can be categorized as either structural or functional. Next network can be visualized and analysed 

as a graph. In the previous studies the authors created a model of the brain injury process [2], 

summarising all the functions of brain regions and the possible effects of damage of functional regions.  

Within several minutes of a stroke beginning, the connections between neurons are impacted by 

significant ischemic depolarization, followed by delayed cell death. While some connections can 

recover if blood flow is quickly restored, those linked to the dying area of tissue (infarct) may not be 

salvageable. In Fig. 1 there is an example how the brain network can be changed after stroke [3]. There 

are 2 situations described – normal brain network, where all regions are connected in small groups and 

then interconnected through the hubs – meaningful brain regions which are highly connected with the 

biggest part of nodes of the whole network. 

 

Fig. 1. Degree distribution of the brain graph: A – healthy brain graph; 

B – two hub nodes are affected by a stroke 
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As we look at the brain model like the graph with nodes (brain regions) and edges (functional 

connections between regions), we can calculate different meaningful parameters, which can show the 

main characteristics of such brain model. In healthy brain, the networks are structured in what is known 

as “small-world” models, characterized by a high clustering coefficient and short characteristic path 

length. This arrangement offers significant advantages, including efficient global information transfer 

at a low cost in terms of connections. However, when there is functional or structural damage, severe 

clinical symptoms, or prolonged disease duration, the network organization deviates from this optimal 

small-world pattern, becoming increasingly pronounced as the damage worsens [4]. 

A small-world network maintains a high clustering coefficient while also having a few long-

distance connections, allowing for efficient global information transfer with a low characteristic path 

length [5]. 

Although a stroke mainly affects a specific area, it also causes changes in other parts of the brain 

and alters how the entire brain network functions. So, instead of just focusing on where the stroke 

occurred, looking at the overall brain connectivity might be more helpful in predicting the behavioural 

problems caused by the stroke. 

Materials and methods 

How can we evaluate node connectivity? There are some main measures for summarizing the 

connectivity of each node in a network. They are shown in Table 1. 

Table 1 

Main parameters of connectivity in network 

Parameter Formula Meaning 

Node degree  
Number of edged connecting node 

i with all other nodes 

Mean degree of a 

network 
 

Average node degree of all node 

degrees 

Degree centrality  
For an undirected network it is the 

same as the node degree 

Closeness 

centrality 
 

Inverse of node’s average shortest 

path length, where 𝑙𝑖𝑗 is the 

shortest path length between node 

i and j 

Betweenness 

centrality 
 

Part of shortest paths between all 

pairs of nodes (j and h) in the 

graph that pass-through a given 

node i 

Clustering 

coefficient 
 

Measures the degree to which 

nodes in the graph tend to cluster 

together. A triplet consists of three 

nodes that are connected by either 

two (open triplet) or three (closed 

triplet) undirected ties. 

Characteristic 

path length 
 

Average of all distances over all 

pairs 

of nodes in a network 

The mentioned measures show that not all elements of the brain connectome are equal and with the 

same meaning in the brain connectivity analysis process. So, based on the graph theory parameters we 

can apply them in the context of brain connectivity analysis. Therefore, a very important moment is to 

correctly interpret the results of calculations. 
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Node degree is the simplest quantity of node connectivity but can give us a general impression 

about the most “connected” node – brain regions, which have links with almost all other brain areas, so 

we can put forward a hypothesis that the injury of these regions may cause even death of the connected 

regions too. 

To get the full picture of the significance of individual graph nodes, we can also calculate a 

parameter, which shows the importance or influence of every brain region in the whole network 

functioning. The term “centrality” was introduced to analyze social networks, but then interpretated in 

neuroscientific applications [6]. Degree centrality, closeness centrality, and betweenness centrality are 

all measures used in network analysis to assess the importance or centrality of nodes within a network. 

Each measure provides a different perspective on how nodes are positioned within the network and their 

potential influence. Degree centrality is a measure of the number of connections a node has in a network. 

Nodes with high degree centrality are directly connected to many other nodes in the network. Closeness 

centrality measures how close a node is to all other nodes in the network. Nodes with high closeness 

centrality are close to many other nodes and can quickly interact with them. Betweenness centrality 

measures the extent to which a node lies on the shortest path between other nodes in the network. Nodes 

with high betweenness centrality act as intermediaries or connectors in the network. They control the 

flow of information or resources between other nodes. 

To analyze how brain connectivity changes after any occurrences, like stroke, based on degree and 

centrality we can highlight highly connected nodes, which are called hubs [7]. Choice of the hubs also 

is a complicated process because there are some aspects that impact it. We will use different centrality 

measures to assign the label of “hub” to nodes. 

The clustering coefficient measures the likelihood that if two nodes are both connected to a third 

node, they are also connected to each other. In other words, it quantifies the tendency of nodes to form 

clusters or groups of interconnected nodes. The characteristic path length is a measure of how closely 

connected nodes are in a network. It represents the average number of steps it takes to travel from one 

node to another. Specifically, it is the minimum number of edges needed to link any two nodes in the 

network, on average. In essence, while the clustering coefficient focuses on how tightly interconnected 

nodes are within local clusters, the characteristic path length gives us an insight into how efficiently 

nodes are connected on a global scale throughout the network [8]. 

Results and discussion 

Using the adjacency matrix [9] that shows connections between 246 brain regions and Python 

package NetworkX, the authors have computed the previously mentioned parameters. In previous works 

of the authors a procedure of creating a brain connectivity graph from the adjacency matric was 

described [10] and some basic parameters were calculated. 

First, a degree distribution – a frequency count of the occurrence of each degree – was computed. 

The results are shown in Fig. 2. The degree is the immediate risk of a node for catching whatever is 

flowing through the network. In the context of brain connectivity, the degree parameter would represent 

the immediate risk of a brain region for receiving or transmitting neural activity within the network. 

Next visualisation is path distribution (Fig. 3) – a frequency count of the occurrence of each path 

distance in the brain graph. The average path distance of 1.52 means that, on average, the shortest path 

length between any two nodes in the brain graph is approximately 1.52. In terms of interpretation, a 

lower average path distance generally suggests a more tightly connected or efficient network, where 

information can travel relatively quickly between different regions of the brain. Also, the path is closely 

related to small-world phenomenon.  

Understanding the clustering coefficient distribution provides insights into the local connectivity 

patterns within the brain graph and can help in characterizing its network structural organization (Fig. 

4). An average clustering coefficient closer to 1 suggests a high level of local clustering or connectivity 

within the brain network. A value of 0.55 indicates that, on average, approximately 55% of a node’s 

neighbours are also connected to each other. This level of local clustering suggests a significant degree 

of organization or modularity within the brain network. The global clustering coefficient is a measure 

of the overall clustering or transitivity in the entire network. It quantifies how much the nodes in the 

graph tend to cluster together. A global clustering coefficient of 0.57 indicates a relatively high degree 
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of local clustering within the brain graph, suggesting a structured and organized network architecture 

that supports efficient information processing and functional specialization. 

Centrality measures of the brain graph nodes were also computed. For further research it is 

necessary to detect a ranking of nodes based on different types of centralities (Fig. 5). It will help find 

the most meaningful and highly connected nodes, which can influence others in case of damage. In Fig. 

5 nodes with the highest centralities are shown. Decoding these nodes means that the brain regions of 

the subcortical nuclei area, such as basal ganglia and thalamus, and their subregions are most connected 

with other parts of the brain. 

For overall conclusions about the centrality in the graph we can calculate average measurements of 

all nodes in graph: 

• average degree centrality: 0.4738; 

• average betweenness centrality: 0.0022; 

• average closeness centrality: 0.6626. 

The average degree centrality indicates that, on average, each node in the brain network is directly 

connected to about 47% of the other nodes. While the average betweenness centrality is low, the brain 

network likely still maintains efficient communication paths between different brain regions. The high 

average closeness centrality indicates that, on average, nodes in the brain network are relatively close to 

one another in terms of the shortest path distances. 

 

Fig. 2. Degree distribution of the brain graph 

 

Fig. 3. Path distance distribution of the brain graph 
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Fig. 4. Clustering coefficient distribution of the brain graph 

 

Fig. 5. Nodes with the highest centralities 

This suggests that information exchange between different brain regions is efficient, with relatively 

short communication pathways. 

But what changes in the brain structure if there are some neurological problems, for example, a 

stroke? In general, two major scenarios of graph parameter changes can be distinguished. The first type 

of graph reorganisation happens if hub nodes are affected by a stroke. This situation decreases the global 

functional integration among the communities in a graph. The second type is when community members 

are targeted which results in lower local integration inside of the modules or groups of brain regions. 

If hub nodes of brain network are damaged, a big number of connections also is destroyed. Based 

on the degree and centrality, there are following hubs: basal ganglia, thalamus, and their subregions. 

These areas are crucial for advanced thinking processes so very meaningful [11]. In Fig. 6 the results of 

the graph parameter changes after injury of the brain hubs are shown. 

So, damaging hubs leads to connectivity changes in the whole network. Removing hub nodes 

increases the average path length between pairs of nodes, reducing the closeness centrality of remaining 

nodes. Hub nodes usually have a high degree, meaning they are directly connected to many other nodes. 

Deleting hub nodes decreases the number of edges in the network and can change the relative degree 

centrality of other nodes. In summary, the removal of hub nodes can disrupt the flow of information or 

connectivity in the network, leading to changes in various centrality measures for other nodes.  

It is important how big parts of hubs are damaged (deleted from the graph). In the given simulated 

scenario only some subregions of thalamus and basal ganglia (Fig. 7) [12] were damaged, and even in 

this situation we see how changes the connectivity of the network. Of course, if the stroke affects whole 

thalamus, connectivity of the network will almost be destroyed, and consequences can be tragic. 

Thalamus is responsible for sensory and motor functions, speech, sleeping, and basal ganglia subregions 
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control our communication skills, emotions, behaviour, reactions, different skills, fatigue condition etc. 

[13]. 

Injury of nodes with the smaller significance (which are not hubs) also will impact information 

workflow in the network but in a less degree. 

 

Fig. 6. Changes of connectivity of a brain graph after damaging of hubs 

 

Fig. 7. Regions of brain  

Conclusions 

1. Using the graph theory, it is possible to determine the main parameters of brain connections.  

2. The presence of hub nodes in brain networks, typically localized in areas of basal ganglia and 

thalamus, underscores their critical role in brain functions. These hubs serve as central points of 

integration and information exchange, coordinating communication across distributed brain 

regions. 

3. Changes in centrality metrics, due to the damage of hub nodes, reflect alterations in information 

flow, integration, and efficiency within the network. 

4. The average shortest path length in the brain network reflects the efficiency of information 

processing and transmission between different brain regions. Changes in the path length following 

alterations to the network structure provide clues about the impact on cognitive functions and 

behavioural outcomes. 

5. Analysis of the brain network connectivity applying the graph theory has significant meaning for 

understanding the brain health and diseases. 
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